0=-16t^2+63

Simple and best practice solution for 0=-16t^2+63 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16t^2+63 equation:



0=-16t^2+63
We move all terms to the left:
0-(-16t^2+63)=0
We add all the numbers together, and all the variables
-(-16t^2+63)=0
We get rid of parentheses
16t^2-63=0
a = 16; b = 0; c = -63;
Δ = b2-4ac
Δ = 02-4·16·(-63)
Δ = 4032
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4032}=\sqrt{576*7}=\sqrt{576}*\sqrt{7}=24\sqrt{7}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24\sqrt{7}}{2*16}=\frac{0-24\sqrt{7}}{32} =-\frac{24\sqrt{7}}{32} =-\frac{3\sqrt{7}}{4} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24\sqrt{7}}{2*16}=\frac{0+24\sqrt{7}}{32} =\frac{24\sqrt{7}}{32} =\frac{3\sqrt{7}}{4} $

See similar equations:

| 6(r-748)=696 | | 4r+24=51. | | 8-5x+13-11=12-4x | | -9=m/12+5 | | 18.84=2×3.14r | | 350=14(n-963) | | 16=k4 | | 12+6x+7x=23+5x-3 | | X2x–3=25 | | 54/f=6 | | 416=2x²-6x | | c-867/6=18 | | 105+(2x+5)=180 | | 15(f-916)=735 | | 6w+105=957 | | 4.5x+27=- | | 12n+4=3n-32 | | W=-12t+72 | | h-5.2=1.6 | | 2=v/25-2 | | 5.00h=65.00 | | x-7=6/1(5-6x)1 | | 3x+2=12+3x | | 56.52=2×3.14r | | 24=2(i-2) | | t-963/9=4 | | -2(x-3)+4=22 | | -7(10x-7)=7+7x | | 546=26(c+13) | | -3x-18=4-5x | | -3f=-3^3-2 | | -4r+7=-3 |

Equations solver categories